Действия

Гелий

Материал из Недро.вики - горная энциклопедия

Гелий (He, лат. helium) — химический элемент VIII груп­пы ко­рот­кой фор­мы (18-й груп­пы длин­ной фор­мы) периодической системы химических элементов первого периода системы химических элементов Д. И. Менделеева, с атомным номером 2. Возглавляет группу инертных газов.

Как простое вещество представляет собой инертный одноатомный газ без цвета, вкуса и запаха.

По распространённости во Вселенной занимает второе место после водорода и является вторым по лёгкости, также после водорода, химическим веществом. Его температура кипения — самая низкая среди всех известных веществ.

Гелий добывается из природного газа процессом низкотемпературного разделения — так называемой фракционной перегонкой.

Физические свойства

Гелий — практически инертный химический элемент.

Простое вещество гелий — нетоксичное, не имеет цвета, запаха и вкуса. При нормальных условиях представляет собой одноатомный газ. Его точка кипения (T = 4,215 K для 4He) наименьшая среди всех веществ; твёрдый гелий получен лишь при давлениях выше 25 атмосфер — при атмосферном давлении он не переходит в твёрдую фазу даже при абсолютном нуле. Экстремальные условия также необходимы для создания немногочисленных химических соединений гелия, все они нестабильны при нормальных условиях.

Распространённость

Во Вселенной

Гелий занимает второе место по распространённости во Вселенной после водорода — около 23 % по массе. Однако на Земле гелий редок. Практически весь гелий Вселенной образовался в первые несколько минут после Большого Взрыва, во время первичного нуклеосинтеза. В современной Вселенной почти весь новый гелий образуется в результате термоядерного синтеза из водорода в недрах звёзд. На Земле он образуется в результате альфа-распада тяжёлых элементов (альфа-частицы, излучаемые при альфа-распаде, — это ядра гелия-4). Часть гелия, возникшего при альфа-распаде и просачивающегося сквозь породы земной коры, захватывается природным газом, концентрация гелия в котором может достигать 7 % от объёма и выше.

Земная кора

В рамках восемнадцатой группы гелий по содержанию в земной коре занимает второе место (после аргона).

Содержание гелия в атмосфере (образуется в результате распада тория, урана и их дочерних радионуклидов) — 5,27⋅10−4 % по объёму, 7,24⋅10−5 % по массе. Запасы гелия в атмосфере, литосфере и гидросфере оцениваются в 5⋅1014 м³. Гелионосные природные газы содержат, как правило, до 2 % гелия по объёму. Исключительно редко встречаются скопления газов, гелиеносность которых достигает 8—16 %.

Среднее содержание гелия в земном веществе — 0,003 мг/кг или 0,003 г/т. Наибольшая концентрация гелия наблюдается в минералах, содержащих уран, торий и самарий: клевеите, фергюсоните, самарските, гадолините, монаците (монацитовые пески в Индии и Бразилии), торианите. Содержание гелия в этих минералах составляет 0,8—3,5 л/кг, а в торианите оно достигает 10,5 л/кг. Этот гелий является радиогенным и содержит лишь изотоп 4He, он образуется из альфа-частиц, излучаемых при альфа-распаде урана, тория и их дочерних радионуклидов, а также других природных альфа-активных элементов (самарий, гадолиний и т. д.).

В 2016 году норвежские и британские ученые обнаружили залежи гелия в районе озера Виктория в Танзании. По примерным оценкам экспертов, объём запасов — 1,5 млрд кубических метров.

Транспортировка

Для транспортировки газообразного гелия используются стальные баллоны (ГОСТ 949-73) коричневого цвета, помещаемые в специализированные контейнеры. Для перевозки можно использовать все виды транспорта при соблюдении соответствующих правил перевозки газов.

Для перевозки жидкого гелия применяются специальные транспортные сосуды Дьюара типа СТГ-10, СТГ-25 и т. п. светло-серого цвета объёмом 10, 25, 40, 250 и 500 литров, соответственно. При выполнении определённых правил транспортировки может использоваться железнодорожный, автомобильный и другие виды транспорта. Сосуды с жидким гелием обязательно должны храниться в вертикальном положении.

Применение

Гелий широко используется в промышленности и народном хозяйстве:

  • в металлургии в качестве защитного инертного газа для выплавки чистых металлов;
  • в пищевой промышленности (зарегистрирован в качестве пищевой добавки E939) как пропеллент и упаковочный газ;
  • в качестве хладагента для получения сверхнизких температур (в частности, для перевода металлов в сверхпроводящее состояние);

для наполнения воздухоплавающих судов (дирижабли и аэростаты) — при незначительной по сравнению с водородом потере в подъёмной силе гелий в силу негорючести абсолютно безопасен;

  • в дыхательных смесях для глубоководного погружения;
  • для наполнения воздушных шариков и оболочек метеорологических зондов;
  • для заполнения газоразрядных трубок;
  • в качестве теплоносителя в некоторых типах ядерных реакторов;
  • в качестве носителя в газовой хроматографии;
  • для поиска утечек в трубопроводах и котлах;
  • как компонент рабочего тела в гелий-неоновых лазерах;
  • в качестве наполнителя в некоторых современных моделях накопителей на жестких магнитных дисках;
  • для наполнения колб филаментных светодиодных ламп, что позволяет эффективно отводить тепло от светодиодных нитей.

Кроме того, нуклид 3He используется как рабочее вещество газовых нейтронных детекторов, в том числе позиционно-чувствительных, в технике нейтронного рассеяния в качестве поляризатора. Гелий-3 является также перспективным топливом для термоядерной энергетики. Растворение гелия-3 в гелии-4 используется для получения сверхнизких температур.

В геологии

Гелий — удобный индикатор для геологов. При помощи гелиевой съёмки можно определять на поверхности Земли расположение глубинных разломов. Гелий как продукт распада радиоактивных элементов, насыщающих верхний слой земной коры, просачивается по трещинам, поднимается в атмосферу. Около таких трещин и особенно в местах их пересечения концентрация гелия более высокая. Это явление было впервые установлено советским геофизиком И. Н. Яницким во время поисков урановых руд. Эта закономерность используется для исследования глубинного строения Земли и поиска руд цветных и редких металлов.

Также гелий может использоваться для выявления геотермальных источников. Согласно опубликованным исследованиям, концентрации гелия в почвенном газе над геотермальными источниками превышает фоновые значения в 20-200 раз.

Повышенные концентрации гелия в почвенном газе могут указывать на наличие залежей урана.

Военное применение

  • Первая мировая война — заправка военных дирижаблей в США и Германии.
  • 1930-е — 1960-е годы — ошибочно считалось, что выделения гелия можно применять для поиска урановых руд. Против этого ещё в 1911 году выступала М. Склодовская-Кюри.
  • С 1950-х годов — продувка топливных баков жидкостных ракет.

В астрономии

В честь гелия назван астероид (895) Гелио, открытый в 1918 году.

Биологическая роль

Гелий, насколько это известно, не несёт какой-либо биологической функции.

Физиологическое действие

Хотя инертные газы обладают наркозным действием, это воздействие у гелия и неона при атмосферном давлении не проявляется, в то время как при повышении давления раньше возникают симптомы «нервного синдрома высокого давления» (НСВД). Содержание гелия в высоких концентрациях во вдыхаемом воздухе может вызвать головокружение, тошноту, рвоту, потерю сознания и смерть от асфиксии (в результате кислородного голодания). Аналогичный эффект часто оказывает единоразовый вдох чистого гелия, например, из шарика с гелием. Как и при вдыхании других инертных газов, ввиду отсутствия вкуса и запаха часто происходит неожиданная потеря сознания при вдохе больших концентраций. При вдыхании гелия тембр голоса становится тонким, похожим на кряканье утки. Более высокая, чем в воздухе, скорость звука в гелии при прочих равных условиях (например, температуре) увеличивает значение частоты резонанса голосового тракта (как ёмкости, наполненной газом).

Риски для здоровья

Вдыхание гелия может быть опасно для здоровья, в связи с тем, что в лёгкие не попадает кислород.

Месторождения

Значительные запасы гелия содержатся в восточносибирских газовых месторождениях в России. Запасы гелия в Ковыктинском месторождении оцениваются в 2,3 млрд. кубометров, в Чаяндинском месторождении - в 1.4 млрд. кубометров.